Nonlinear Dirac Operator and Quaternionic Analysis

نویسنده

  • Andriy Haydys
چکیده

Properties of the Cauchy–Riemann–Fueter equation for maps between quaternionic manifolds are studied. Spaces of solutions in case of maps from a K3–surface to the cotangent bundle of a complex projective space are computed. A relationship between harmonic spinors of a generalized nonlinear Dirac operator and solutions of the Cauchy– Riemann–Fueter equation are established.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the relation between the Maxwell system and the Dirac equation

The relation between the two most important in mathematical physics first order systems of partial differential equations is among those topics which attract attention because of their general, even philosophical significance but at the same time do not offer much for the solution of particular problems concerning physical models. The Maxwell equations can be represented in a Dirac like form in...

متن کامل

A universal lower bound for the first eigenvalue of the Dirac operator on quaternionic Kähler manifolds

A universal lower bound for the first positive eigenvalue of the Dirac operator on a compact quaternionic Kähler manifold M of positive scalar curvature is calculated. It is shown that it is equal to the first positive eigenvalue on the quaternionic projective space. For this, the horizontal tangent bundle on the canonical SO(3)-bundle over M is equipped with a hyperkählerian structure and the ...

متن کامل

‘the Quaternionic Kp Hierarchy and Conformally Immersed 2-tori in the 4-sphere’

The quaternionic KP hierarchy is the integrable hierarchy of p.d.e obtained by replacing the complex numbers with the quaternions in the standard construction of the KP hierarchy and its solutions; it is equivalent to what is often called the Davey-Stewartson II hierarchy. This article studies its relationship with the theory of conformally immersed tori in the 4-sphere via quaternionic holomor...

متن کامل

Inverse Problem for Interior Spectral Data of the Dirac Operator with Discontinuous Conditions

In this paper, we study the inverse problem for Dirac differential operators with  discontinuity conditions in a compact interval. It is shown that the potential functions can be uniquely determined by the value of the potential on some interval and parts of two sets of eigenvalues. Also, it is shown that the potential function can be uniquely determined by a part of a set of values of eigenfun...

متن کامل

Symmetry protected Z2-quantization and quaternionic Berry connection with Kramers degeneracy

As for a generic parameter dependent hamiltonian with the time reversal (TR) invariance, a non Abelian Berry connection with the Kramers (KR) degeneracy are introduced by using a quaternionic Berry connection. This quaternionic structure naturally extends to the many body system with the KR degeneracy. Its topological structure is explicitly discussed in comparison with the one without the KR d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007